2670 Short Reports

dissolved in Et₂O, dried and the Et₂O was removed to leave a crude solid which on CC over 50 g silica gel (60-120 mesh) furnished glut-5(10)-en-1-one, $C_{30}H_{48}O$ (3), mp 312°, $[\alpha]_D + 30^\circ$ (CHCl₃). It did not respond to a Zimmermann test; its UV, IR, ¹H NMR and MS data were similar to those in the lit. [3].

Acknowledgements—We wish to thank the RSIC, Madras, for spectral analyses. Financial assistance from UGC is also gratefully acknowledged.

REFERENCES

- Chopra, R. N., Nayar, S. L. and Chopra, I. C. (1956) Glossary of Indian Medicinal Plants, p. 18. Council of Scientific and Industrial Research, New Delhi.
- Budzikiewicz, H., Wilson, J. N. and Djerassi, C. (1963) J. Am. Chem. Soc. 85, 3688.
- Anjeneyulu, A. S. R., Row, R., Subrahmaynyam, C. and Murty, K. S. (1973) Tetrahedron 29, 3909.
- Bhacca, N. S. and Williamson, D. H. (1964) Application of NMR Spectroscopy in Organic Chemistry, p. 78. Holden-Day, San Francisco.

Phytochemistry, Vol. 25, No. 11, pp. 2670-2671, 1986. Printed in Great Britain.

0031 -9422/86 \$3.00 + 0.00 Pergamon Journals Ltd.

3-ACETYLMASLINIC ACID FROM THE ROOT BARK OF TERMINALIA ALATA*

A. S. R. Anjaneyulu,† A. V. Raghava Reddy,† Gopal R. Mallavarapu; and R. S. Chandrasekhara;

†School of Chemistry, Andhra University, Waltair 530003, India; ‡Central Institute of Medicinal and Aromatic Plants, Regional Centre, Bangalore 560037, India

(Received 27 February 1986)

Key Word Index-Terminalia alata; Combretaceae; triterpenoids; 3-acetylmaslinic acid.

Abstract—A new triterpene acid, 3-acetylmaslinic acid, has been isolated from the root bark of *Terminalia alata* together with oleanolic acid, arjunic acid, arjunolic acid and arjunetin.

The isolation of triterpenoids from the heartwood of *Terminalia alata* Heyne ex Roth (syn. T. tomentosa W. & A.) was reported recently [1, 2]. Continuing our studies on the chemical constituents of the genus *Terminalia*, we report here the isolation of a new triterpene acid, identified as 3-acetylmaslinic acid, from the root bark of T. alata together with the known compounds oleanolic acid, arjunic acid, arjunolic acid and arjunetin.

Extraction of the ground root bark with CHCl₃ and EtOAc afforded a mixture of triterpenoids. Separation by repeated column chromatography and preparative TLC over silica gel led to the isolation of the above known triterpene acids and the new acid TARB-2. The compound TARB-2, mp 192-195°, $[\alpha]_D + 32^\circ$, analysed for $C_{32}H_{50}O_5$ and gave a positive Liebermann-Burchard test and yellow colour with tetranitromethane. Its IR spectrum showed the presence of hydroxyl (3500 cm⁻¹), ester carbonyl (1740 cm⁻¹) and carboxyl (1690 cm⁻¹) groups. The ¹H NMR spectrum showed the resonances for seven tertiary methyls, one acetate and olefinic groups. In addition, it showed the presence of CHOH with a signal at

 δ 3.29 (m) and a CHOAc signal at 4.68 (d, J=12 Hz). The large coupling constant indicated a diaxial relation; therefore the hydroxyl and acetoxyl groups are in diequatorial orientation. Acetylation with acetic anhydride and pyridine gave diacetylmaslinic acid (1b), which on treatment with diazomethane afforded diacetylmethyl

$$R^{1}O_{r_{1}}$$
 $R^{2}O$ R^{3}

1 $R^1 = R^2 = R^3 = H$

1a $R^1 = R^3 = H$; $R^2 = Ac$

1b $R^1 = R^2 = Ac$; $R^3 = H$

1c $R^1 = R^2 = Ac$; $R^3 = Me$

Short Reports 2671

maslinate (1c). Alkaline hydrolysis of TARB-2 gave maslinic acid (1) [2]. The above data lead to the identification of TARB-2 as 3-acetylmaslinic acid (1a).

Although the occurrence of acetyloleanolic acid in plants is very common, this is the first report of the isolation of 3-acetylmaslinic acid (1a) from a plant and, to our knowledge, it has also not been prepared from maslinic acid. The isolation of maslinic acid [1, 2], as well as its acetate, from T. alata is of biogenetic significance in providing the missing link for a dihydroxytriterpene amongst a mixture of mono- to tetrahydroxytriterpenoids found in the plant. The methanol extract gave a crude material which afforded a small amount of ellagic acid.

EXPERIMENTAL

Mps are uncorr. IR spectra were measured on KBr discs and ¹H NMR spectra were recorded in CDCl₃ soln using TMS as internal standard. The root bark of *T. alata* was obtained from CIMAP Experimental Station, Hebbale, Coorg District, Karnataka State, India and a voucher specimen has been deposited at CIMAP, Bangalore.

Extraction and isolation. Dried ground root bark (650 g) of T. alata was first defatted with hexane and extracted with CHCl₃, EtOAc and MeOH successively. The CHCl₃ extract gave a material (2.0 g) which was separated into hexane (0.22 g) and Et₂O (1.1g) soluble fractions. The hexane-soluble fraction on repeated crystallization from MeOH gave oleanolic acid (TARB-1; 80 mg), mp 310-311° [2]. The Et₂O-soluble fraction was found by TLC (silica gel; CHCl₃-MeOH, 98:2) to consist of one major and three minor compounds. CC over silica gel (100-200 mesh), eluting with CHCl₃ and a CHCl₃-MeOH mixture of increasing polarity, gave a further amount of oleanolic acid (20 mg), a mixture of oleanolic acid and TARB-2 (60 mg),

arjunic acid (TARB-3; 625 mg), mp 334-335°, [3] and arjunolic acid (TARB-4; 50 mg), mp 330-332° [2]. The EtOAc extract gave a mixture (10 g) which was subjected to repeated CC and prep. TLC over silica gel: oleanolic acid (50 mg), TARB-2 (40 mg), arjunic acid (500 mg), arjunolic acid (60 mg) and arjunetin (TARB-5, 65 mg), mp 238-240° [4].

Compound TARB-2 (3-acetylmaslinic acid, 1a) mp 192–195° (from CHCl₃–MeOH), [α]_D + 32° (c 0.5; CHCl₃). IR ν _{max} cm⁻¹: 3500 (OH), 1740 (OAc), 1695 (COOH), 1460, 1265, 830 (–C=CH). ¹H NMR: δ 0.70, 0.81, 0.85, 0.95, 1.05, 1.07 (δ × s, 7 Me), 2.02 (s, OAc), 3.29 (m, 1H, H-2), 3.62 (br s, OH), 4.62 (d, 1H, J = 12 Hz, H-3). Found: C, 74.76; H, 9.75. Cake. for C₃₂H₅₀O₅: C, 74.71; H, 9.72%. Acetate (Ac₂O–pyridine), mp 232–234° (MeOH), identical to diacetylmaslinic acid (1b) (mmp, IR, ¹H NMR, co-TLC). Methyl ester diacetate mp 176–178° (CH₂N₂–Et₂O), identical to diacetylmethyl maslinate (1c) [1] (mmp, IR, ¹H NMR, co-TLC). Hydrolysis of TARB-2 (15 mg) with 6% KOH in MeOH (10 ml) for 6 hr under reflux afforded after the usual work-up maslinic acid (1), mp 268–270° [2].

Acknowledgements—We thank Dr. Akhtar Husain, Director, Central Institute of Medicinal and Aromatic Plants, Lucknow and Dr. M. R. Narayana, Scientist in Charge, CIMAP Regional Centre, Bangalore for their interest and encouragement.

REFERENCES

- Mallavarapu, G. R., Rao, S. B., Muralikrishna, E. and Rao, G. S. R. S. (1980) *Indian J. Chem.* 19B, 713.
- Mallavarapu, G. R. and Muralikrishna, E. (1983) J. Nat. Prod. 46, 930.
- Row, L. R., Murthy, P. S. N., Rao, G. S. R. S., Sastry, C. S. P. and Rao, K. V. J. (1970) *Indian J. Chem.* 8B, 716.
- Row, L. R., Murthy, P. S. N., Rao, G. S. R. S., Sastry, C. S. P. and Rao, K. V. J. (1970) Indian J. Chem. 8B, 772.